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ABSTRACT

Coronary artery disease (CAD) remains the predominant cause of death in the world, especially in western
countries. Through technological breakthroughs in recent years, artificial intelligence (Al) is increasingly being
applied in the field of cardiovascular medicine for the interpretation of invasive imaging diagnostic techniques
such as coronary angiography (CA) and non-invasive techniques, coronary CT angiography (CCTA) being
implemented to guide subsequent management of CAD patients. The present aim is to review published data in

medical literature to analyze the current use of Al in CAD patients.
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INTRODUCTION

Coronary artery disease (CAD) remains the predominant
global cause of human diseases, accounting for >9 million
deaths in 2016, according to the World Health Organization
(WHO) estimates, especially in western countries [I]. In
recent years, in order to increase the efficacy in the diagno-
sis and management of CAD, artificial intelligence (Al) is
being increasingly applied for the interpretation of invasive
imaging diagnostic techniques such as coronary angiography
(CA) and non-invasive techniques, including coronary CT
angiography (CCTA) [2], [3]. This increasing use of Al in
CAD patients is also a result of new indications for imaging
in the 2021 American College of Cardiology/American Heart
Association Chest Pain Guideline with Class I recommenda-
tion for either invasive and non-invasive imaging in patients
with acute and stable chest pain at intermediate risk patients
[4]. Between 2001 and 2020, the proportion of AI/ML-
related articles in major cardiology journals per month was
0.4% as compared to 17.8% per month by 2021. The goal of
this review is to analyze the current use of Al in the diagnosis
and management of CAD patients.

ARTIFICIAL INTELLIGENCE IN CAD PATIENTS:
ESSENTIAL ASPECTS

Al can be practically defined as a subset of computer
science dedicated to creating systems, algorithms, or models
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that can perform tasks in place of the traditional manual
method (Figure 1). Currently, two different subsets of Al
can be identified: the former is represented by machine
learning (ML) while the latter by deep learning (DL). ML
can be further subdivided into supervised learning, unsuper-
vised learning, semi-supervised learning, and reinforcement
learning [5]. In CAD patients, the most applied practices are
supervised learning and unsupervised learning. Specifically,
supervised learning categorizes data that is subsequently used
to classify unseen data. For example, this approach can be
adopted to predict a patient’s response to certain treatments
[6]. Conversely, unsupervised learning algorithms are trained
to find patterns or conclusions through unlabeled training
data. An example of unsupervised learning in CAD patients
can be represented by identifying distinct clinical subgroups
of patients which may benefit from targeted therapy. The
second main subset of Al is represented by ML, which is
mainly based on regression models, random forests (RF),
and support vector machines (SVM) [7]. In CAD patients
specifically, regression approaches are generally adopted for
classification tasks. In CAD and other cases, both the diag-
nosis and prognosis prediction depend on many risk factors,
which may lead to overfitting. To overcome this problem, the
use of RF, which can be defined as a combination, or better,
integration of decision trees where each model relies on the
values of a random vector that is sampled independently and
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FIGURE 1. Basics of artificial intelligence (Al), machine learning (ML),
and deep learning (DL). Al refers to the use of computational techniques to
perform tasks characteristic of human intelligence. Conversely, ML represents
a subfield of Al that enables computers to learn automatically by being
exposed to large amounts of data. DL is a specific form of ML that uses
multilayered artificial neural networks to elaborate predictions directly from
input data.

with equal distribution for all decision trees in the "forest".
These approaches can be adopted to identify new imaging
biomarkers and/or integrate data from many different sources
to provide patient-tailored risk prediction through anatomic
and functional imaging assessment of CAD.

TECHNICAL ASPECTS OF Al FOR CAD PATIENTS

The use of Al in CAD patients assumes that a basic CA
has been performed using a standard technique evaluating
several parameters, such as the coronary flow (Thrombolysis
in Myocardial Infarction (TIMI) flow), lesion severity (in
terms of both percentages of stenosis and length), location
of the lesion, presence of collateral vessels, identification
of thrombi, calcification and congenital abnormalities. Sub-
sequently, the acquired frames must be transformed into
three-dimensional structures using segmentation techniques
and dedicated protocols for the reconstruction of the real
anatomy [8]. Conventionally, the frame used for the analysis
is generally captured during the end-diastolic phase of the
cardiac cycle to minimize coronary artery motion and limit
artifacts. Segmentation can be performed either manually
or using automated image analysis, which uses trained DL
algorithms to automatically segment coronary arteries in
coronary angiography [9], [10]. These approaches have dif-
fering accuracy, as shown in Table 1.
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TABLE 1. Studies analyzing artificial intelligence for automated coronary
angiography imaging analysis. (ACC: accuracy, AUC: area under curve, F1:
F1 score, SE: sensitivity)

Authors Year Type of analysis Performance
DuTetal [10] 2021 Segmentation ACC:98%
SE: 85%

Zhao Cetal. [11] 2021 Segmentation DSC: 0.89

Moon JH et al. [12] 2021 Lesion detection | AUC: 0.96
and classification

Danilov VV et al. [13] 2021 Lesion detection | F1:0.96
and classification

Pang K et al. [14] 2021 Lesion detection | F1:0.88
and localization

Chen Setal. [15] 2020 Lesion detection | F1:0.91 to
and classification 0.97

Wu W et al. [9] 2020 Lesion detection F1:0.83

CURRENT USE OF ARTIFICIAL INTELLIGENCE IN CAD
PATIENTS
Fractional flow reserve

Al is currently adopted for several purposes in CAD pa-
tients. For example, one of the main uses is the functional
evaluation of coronary artery blood flow, which represents
the main aspect that guides treatment decisions [16]. Frac-
tional flow reserve (FFR) remains the most used metric.
From a physical point of view, FFR evaluates the mean
distal coronary pressure divided by the mean proximal pres-
sure during maximal hyperemia [17]. However, this type
of evaluation presents some limitations, represented by the
invasive assessment, the need for costly pressure wires, and
a prolonged procedural time [18], [19]. Therefore, in or-
der to overcome these limitations, some interventionalists
use the so-called quantitative flow ratio (QFR), which is a
non-invasive method used to calculate functional sufficiency
based on 3D-angiographic reconstruction and computational
fluid dynamics [20]. Unfortunately, as of current QFR anal-
ysis is not readily available for daily clinical practice at
the catheterization laboratory and requires expensive compu-
tational post-processing. Al-based FFR estimation requires
less processing time as compared to QFR estimation based on
computational fluid dynamics [21]. Similarly, a new software
called AutocathFFR has demonstrated the ability to detect
coronary lesions and predict their FFR value without coro-
nary artery annotation or view selection with a sensitivity,
specificity, positive predictive value, and negative predictive
value of 0.88, 0.93, 0.94, and 0.87, respectively [ 8].

Coronary Calcium score

Coronary artery calcium (CAC) represents a marker of
coronary atherosclerosis and a powerful predictor of an-
giographically significant obstructive CAD [22]. Nowadays,
CAC scoring obtained from non-contrast electrocardiograph-
ically gated cardiac CT requires manual interaction by an
operator. Conversely, ML approaches and analysis may allow
rapid and automated quantification of CAC. Available data
indicate that fully automated ML- and DL-based quantifica-
tion of CAC are feasible and reliable compared with manual
measurements [23], [24].
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FIGURE 2. Overview of artificial intelligence application in patients with
coronary artery disease.

Coronary artery stenosis

Several previous large investigations have already demon-
strated the prognostic value of anatomic assessment of CAD
with coronary CCTA [25]. Several Al approaches have been
evaluated to automatically determine the degree of coronary
stenosis directly from image data achieving a sensitivity of
95% and specificity of 67% compared with human operators.
Furthermore, CCTA-derived measures of coronary stenosis
have also been integrated into ML models for outcome pre-
diction demonstrating good performances [25]-[28].

Coronary Plaque Characterization

In current clinical practice, CCTA allows the assessment
of plaque morphology, as well as the presence of positive
remodeling, spotty calcification, or napkin-ring sign, which
have demonstrated a significant predictive value for future
acute coronary syndrome [28], [29]. CCTA-derived quan-
titative plaque measures have also been incorporated into
different ML models over the years to enhance outcome pre-
diction demonstrating a superior performance compared with
quantitative plaque features or qualitative high-risk plaque
features alone [30]. Moreover, ML models provided superior
prediction for lesion-specific ischemia when compared to
stenosis severity or pretest probability of CAD [31].

FUTURE PERSPECTIVES

Undoubtedly, AI will be a useful tool in the management
of CAD patients. However, a problem to be considered due
to this would be the rise of clinicians who may always accept
a prognosis obtained through ML, which may influence the
lives of patients. Secondly, the absence of adequate knowl-
edge of the use of Al in CAD patients, compounded with
the absence of adequate training/knowledge regarding the
basic process underlying this type of analysis may limit the
diffusion of such techniques. Similarly, the absence of large
datasets to train and validate AI modes may lead to poor
performance of Al in uncommon diseases [32]. Conversely, it
is also true that cardiovascular data needed for Al analysis are
widely available in daily clinical practice (such as medical
imaging, blood sample, and electronic health records); these
aspects may facilitate the adoption of ML. It is important to
note, however, that to date, unsupervised learning methods
have rarely been adopted in the field of cardiac imaging. It
should also be noted that misdiagnosis or missed diagnosis,
system error, and unrepeatable results may also occur using
Al-related software. Therefore, clinicians cannot be replaced
by AI since they remain fundamental in judging the Al
results, and considering the specific conditions of the patient,
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and incorporating their own experience in every scenario.
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